TRML 思考賽-2008

思考賽共 10 題，每題 4 分。答題時必須寫明計算或證明過程，為得到滿分，答題方式必須合理，
清楚簡明。前面小題縱使未被提出，也可被引用來解後面小題；但反之後面小題的結果，未
正確證明之前，不可用來解前面小題。繳交的答題紙每張至少一頁，且必須在每張答題紙上方
標明題號且依序排列。每張紙上只寫一面，不要寫兩面。
准考編號大會已直接印於答題紙上，於繳交的答題卷上，不可用其他方式表明隊伍的身份。

在一個 \(m \times n \) 的模盤中，若在某一個格處放一個 \(\bigcirc \)，則它可以控制本格及上下左右等格。舉例
來說，在 \(3 \times 5 \) 的模盤中，如圖（一），放在 \((2,3) \) 的 \(\bigcirc \) 可以控制 \((2,2) \)、\((1,3) \)、\((2,3) \)、\((3,3) \),
\((2,4) \) 這五格；而如圖（二），放在 \((1,1) \) 的 \(\bigcirc \) 僅能控制 \((1,1) \)、\((2,1) \)、\((1,2) \) 這三格。

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(\bigcirc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

圖（一）

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\bigcirc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

圖（二）

設 \(f(m,n) \) 表示在 \(m \times n \) 模盤放最少數目的 \(\bigcirc \)，使得模盤上的每一格都至少能被某一個 \(\bigcirc \)
控制。舉例來說，不難可以驗算 \(f(1,1) = f(1,2) = f(1,3) = 1 \) 及 \(f(2,2) = f(2,3) = 2 \)。要說明
\(f(2,3) = 2 \)。首先，\((1,1) \) 和 \((2,3) \) 這兩格各放一個 \(\bigcirc \)（如圖（三）所示），就能控制整個 \(2 \times 3 \)
的模盤，所以 \(f(2,3) \leq 2 \)；其次，在 \(2 \times 3 \) 的模盤中，每一個 \(\bigcirc \) 最多只能控制 4 格，所以
\(f(2,3) \geq 2 \)；故有 \(f(2,3) = 2 \)。

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>(\bigcirc)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(\bigcirc)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

圖（三）

1. 求 \(f(1,n) \) 之值（應說明為何是此值）。

2. 求 \(f(2,n) \) 之值（應說明為何是此值）。

第 1 頁，共 2 頁
3. 求 \(f(3, n) \) 之值（應說明為何是此值）。

4. 證明 \(f(m, n) \leq \frac{(m+4)(n+4)}{5} \)。

5. 求 \(\lim_{n \to \infty} \frac{f(n, n)}{n^2} \) 之值（應說明為何是此值）。

如果將前述的控制各格的規則改變，在新的規定裏，放在某一格的 \(\mathcal{R} \) 能控制其上下左右
等格，但不能控制自己所在的格。例如，在图（一）所示，放在 (2, 3) 的 \(\mathcal{R} \) 可以控制 (2, 2)
(1, 3), (3, 3), (2, 4) 這四格，但不能控制自己所在的 (2, 3) 這一格；又如图（二）
所示，放在 (1, 1) 的 \(\mathcal{R} \) 可以控制 (2, 1), (1, 2) 這二格，但不能控制 (1, 1) 這一格。設 \(g(m, n) \) 表示
在 \(m \times n \) 積盤放最少數目的 \(\mathcal{R} \)，使得用這種新的控制方方式，積盤上的每一格都能被某一 \(\mathcal{R} \) 控制。
舉例來說，\(g(1, 1) \) 沒有定義：不難以驗證，\(g(1, 2) = g(1, 3) = g(1, 4) = g(2, 2) = g(2, 3) = 2 \); \n而 \(g(1, 5) = 3 \)。要說明 \(g(1, 5) = 3 \)。首先，在 \((1, 2), (1, 3), (1, 4) \) 這三格各放一個 \(\mathcal{R} \)（如圖（四）
所示），就能控制整個 \(1 \times 5 \) 積盤，所以 \(g(1, 5) = 3 \)；其次，在 \(1 \times 5 \) 積盤中，每一個 \(\mathcal{R} \) 最多只
能控制 2 格，所以 \(g(1, 5) \geq 5 \); 故有 \(g(1, 5) = 3 \)。

![图（四）](image)

6. 當 \(n \neq 4k + 2 \) 時，求 \(g(1, n) \) 之值（應說明為何是此值）。

7. 當 \(n = 4k + 2 \) 時，求 \(g(1, n) \) 之值（應說明為何是此值）。

8. 求 \(g(2, n) \) 之值（應說明為何是此值）。

9. 證明 \(g(m, n) \leq \frac{(m+3)(n+4)}{4} \)。

10. 求 \(\lim_{n \to \infty} \frac{g(n, n)}{n^2} \) 之值（應說明為何是此值）。