本主題是由頂點及頂點相連的邊所成的圖形。例如：圖一有六頂點與六邊。若頂點 A 與 B 有邊相連，則稱頂點 A 與 B 相鄰。若在頂點 V₀、V₁、…、Vₙ 中，V₀ 與 V₁、V₁ 與 V₂、…、Vₙ 至 Vₙ 都相鄰，則我們稱由 V₀ 沿 V₁、V₂、…、Vₙ 至 Vₙ 的路徑共有 n 步。例如：在圖一中，由 A 沿 B、C、D 至 E 的路徑共有 4 步，由 A 沿 F 至 E 的路徑共有 2 步。對圖形中相異兩頂點 P 與 Q，由 P 沿所有可能路徑至 Q 的步數中的最小值稱為頂點 P 與 Q 的距離，記為 d(P,Q)。例如：在圖一中，d(A,B) = d(A,F) = 1，d(A,C) = d(A,E) = 2，d(A,D) = 3。在一圖形 G 中，將每一對相異頂點的距離相加，所得的和稱為圖形 G 的 Wiener 數，記為 W(G)。例如：圖一的圖形的 Wiener 數為 27。

在一個共有 (n+1) 個頂點的圖形中，若有一個特殊頂點與其他 n 個頂點都相鄰，而其他 n 個頂點彼此都不相鄰，則這個圖形記為 S(n)。例如：圖二是 S(8)。

問題 1. 試求 W(S(8))=__________ ?
問題 2. 試求 W(S(n))=__________ ?

在一線段上標出 n 個頂點（含兩端點）的圖形，記為 L(n)。例如：圖三是 L(5)。n 邊型的圖形，記為 C(n)。例如：圖一是 C(6)。

問題 3. 試求 W(L(n))=__________ ?
問題 4. 試求 W(C(2n))=__________ ?

將一長方形的兩組對邊分別作 (m-1) 等分點與 (n-1) 等分點，再以平行於邊的線段連接，可相交得出 mn 個頂點，此圖形記為 G(m,n)。例如：圖四是 G(3,4)。

問題 5. 試求 W(G(3,4))=__________ ?
問題 6. 試求 W(G(n,n))=__________ ?
問題 7. 試求 \(W(G(m,n)) = \)？

將 \(n \) 個 \(C(6) \) 鏈接成圖五的形式，這個圖形記為 \(H(n) \)。例如：圖五是 \(H(4) \)。

問題 8. 試求 \(W(H(4)) = \)？

問題 9. 試求 \(W(H(n)) - W(H(n-1)) = \)？

問題 10. 試求 \(W(H(n)) = \)？

參考解答：
1. 64（本題為問題2的特別值）
2. ∴ 任何一點非中心的頂點到中心點的距離為 1，到其他非中心點的距離為 2
 ∴ \(W(S(n+1)) = W(S(n)) + 2n + 1 \)
 由歸納法 \(W(S(n)) = n^2 \)
3. 由 \(W(L(n+1)) = W(L(n)) + (1 + 2 + 3 + \cdots + n) \)
 由歸納法 \(W(L(n)) = \frac{1}{6} n(n-1)(n+1) \)
4. \(C(n) \) 中任一點到其他頂點的距離總和為 \(2[1 + 2 + \cdots + (n-1)] + n = n^2 \)
 ∴ \(W[C(n)] = \frac{2n \cdot n^2}{2} = n^3 \)
5. 154
6. \(\frac{1}{3} n^3 (n^2 - 1) \)
7. 我們把 \(G(m,n) \) 的點叫 \((1,1)\), \((1,2)\), \cdots, \((1,n)\), \((2,1)\), \((2,2)\), \cdots, \((m,n)\)，如圖

\[d((a,b),(c,d)) = |a-c| + |b-d| \quad (| \text{指絕對值}) \]

\[W(G(m,n)) \]

\[= \frac{1}{2} \sum_{1 \leq a < m} \sum_{1 \leq b < m} \sum_{1 \leq c < m} \sum_{1 \leq d < m} d((a,b),(c,d)) \]

\[= \frac{1}{2} \left[n^2 \left(\sum_{1 \leq a < m} |a-c| \right) + m^2 \left(\sum_{1 \leq c < m} |b-d| \right) \right] \]

\[= \frac{1}{2} \left[\frac{n^2}{3} m(m^2 - 1) + \frac{m^2}{3} n(n^2 - 1) \right] \]

\[= \frac{mn}{6} (m+n)(mn-1) \]
9. 把 $H(n)$ 圖形分成二部份，一部份是 $H(n-1)$，另一部份是最右邊四個點，我們叫它為 B

\[\therefore W(H(n)) \]

\[= W(H(n-1)) + B \text{部份的 Wiener 數} + \text{所有 B 部份的點到 } H(n-1) \text{的點所有距離總和} \]

可以從歸納法算出

\[W(H(n)) - W(H(n-1)) = 16n^2 + 8n + 2 \]

10. $\frac{1}{3}(16n^3 + 36n^2 + 26n + 3)$